
Safety through quality

Document ID: MC-WP-007 Coverage roadblocks v6 Copyright © Rapita Systems Ltd. All rights reserved.INDT-v10

W H I T E P A P E R

Seven Roadblocks to 100% Structural Coverage
(and how to avoid them)

Seven Roadblocks to 100% Structural Coverage | page i

Contents
1.	 Introduction		 1

	 1.1 What is code coverage for?		 1

	 1.2 What does it mean to get 100% code coverage?		 2

	 1.3 Does it matter which code coverage criteria I am using?		 2

2.	 What are the barriers to 100% code coverage	 4

	 2.1 Missing requirements		 5

	 2.2 Missing or incorrest tests		 5

	 2.3 Dead code		 6

	 2.4 Deactivated code		 6

	 2.5 Defensive programming		 7

	 2.6 Impossible combinations of events		 8

	 2.7 Compiler introduced errors		 9

3.	 Dealing with less than 100% coverage		 10

4.	 About RapiCover		 12

	 4.1 Reduced timescales by running fewer on-target tests		 12

	 4.2 Reduced risk through greater tool flexibility	 	 13

	 4.3 Reduced effort for certification activities	 	 14

5.	 Want to learn more?		 15

page 1 | Seven Roadblocks to 100% Structural Coverage

Correct test results
are essential

Throughout this white

paper, we assume

that in addition to

monitoring the code

coverage of tests, you

are also checking the

tests result in “correct”

behavior, whether

that is a specific result,

responses within a

particular time frame

or some other criteria.

Unless test results

are 100% correct,

code coverage

measurements are

meaningless.

1.1	 What is code coverage for?
Code coverage (also referred to as
structural coverage analysis) is an
important verification tool for establishing
the completeness and adequacy of
testing.

DO-178B/C and ISO 26262 both
emphasise the use of requirements-
based testing as an important part of
the software verification process. In
requirements-based testing, source code
and tests are derived from high and low
level requirements. Checking traceability
between the requirements, the test cases
and the source code demonstrates:

•	 Every requirement has one or more
test cases, which verify that it has
been correctly implemented

•	 All source code is traceable to a
requirement

Traceability between code, requirements
and tests is complemented by measuring
structural coverage of the code when the
tests are executed. Where coverage is
less than 100%, this points to:

•	 Code that is not traceable to
requirements

•	 Inadequate tests

•	 Incomplete requirements

•	 A combination of the above

Different coverage criteria (see Table 1,
on page 3) results in the degree of rigor
applied in testing the code to reflect the
Development Assurance Level (DAL) of
the system.

1.	Introduction

Code

TestsRequirements

Figure 1 – Requirements traceability

Seven Roadblocks to 100% Structural Coverage | page 2

1.2	 What does it mean to get 100% code
 coverage?

When you use requirements-based testing, 100% code coverage means that, subject
to the coverage criteria used, no code exists which cannot be traced to a requirement.
For example, using function coverage, every function is traceable to a requirement
(but individual statements within the coverage may not be).

What 100% code coverage does not mean is:

•	 Your code is correct. You’ve got test cases which, when aggregated, exercise every
line of code. This is not sufficient to show there are no bugs. As long ago as 1969
Edsger Dijkstra noted “testing shows the presence of bugs, not their absence” – in
other words, just because testing doesn’t show any errors, it doesn’t mean they
are not present.

•	 Your software requirements are correct. This is determined through validation of
the requirements with the customer.

•	 You’ve tested 100% of your requirements. Merely achieving 100% code coverage
isn’t enough. This is only true if you achieve 100% code coverage AND you have a
test for 100% of your requirements AND every test passes.

•	 Your compiler translated your code correctly. You might discover the compiler is
inserting errors which cause incorrect results in some situations (ones you haven’t
tested for).

•	 You have covered 100% of your object code. Even when all statements and
conditions of the source code are being executed, the compiler can introduce
additional structures into the object code.

page 3 | Seven Roadblocks to 100% Structural Coverage

1.3	 Does it matter which code coverage
 criteria I am using?

There are a number of different code coverage criteria, which affect how thoroughly
test completeness is assessed. The code coverage criteria you use are typically driven
by the integrity level of the software (DAL for DO-178B/C or ASIL for ISO 26262) that
you are using.

Irrespective of which criteria you are using in your testing, if you cannot achieve 100%
code coverage, the strategies you need to apply are the same – so for the purposes
this paper it doesn’t matter which coverage criteria you are using. There is one
exception to this, which applies to MC/DC (see Impossible combinations of events on
page 8).

Coverage
type

DO-178B/C ISO 26262 (software
architecture)

ISO 26262
(unit test)

Function
Coverage

Used with
MC/DC

ASIL C,D Highly Recommended

ASIL A,B Recommended

-

Call
Coverage

Not Required ASIL C,D Highly Recommended

ASIL A,B Recommended

Not Required

Statment
Coverage

Level A, B, C
Required

Not Required ASIL A, B Highly Recommended

ASIL C, D Recommended

Decision
Coverage

Level A, B
Required

Not Required Not Required

Branch
Coverage

Not Required Not Required ASIL B, C, D Highly Recommended

ASIL A Recommended

MC/DC Level A
Required

Not Required ASIL D Highly Recommended

ASIL A, B, C Recommended

Table 1. Coverage requirements by standard/guideline

Seven Roadblocks to 100% Structural Coverage | page 4

There are a number of reasons why it may not be possible to
achieve 100% code coverage. In practice these usually conspire
to make it very rare to achieve full coverage. In this paper, we’ve
identified seven of the most frequently occurring reasons:

•	 Missing requirements

•	 Missing or incorrect tests

•	 Dead code

•	 Deactivated code

•	 Defensive programming

•	 Impossible combinations of events

•	 Compiler-introduced errors

When structural coverage analysis shows
less than 100% coverage, one reasonable

response would be to follow a process
similar to this:

1.	Review code to establish where
coverage is missing.

2.	 Identify the cause of the missing code.
The list (see left) gives a checklist for
likely causes of this.

3.	 Identify what action needs to be
undertaken to remedy the missing
coverage.

2.	What are the barriers to 100%
code coverage

Figure 2 – RapiCover report showing incomplete coverage

page 5 | Seven Roadblocks to 100% Structural Coverage

2.1	 Missing requirements
Identifying missing requirements is one of the primary reasons for performing
code coverage.

If code exists for which there is no requirement, there will be no tests for that
requirement, and consequently that code would not be covered during testing. It may
be the case that the code in question is implicitly related to an existing requirement,
which needs to be refined to cover additional cases, or to be treated in more detail (a
derived requirement in DO-178C).

What to do about it?

If the missing coverage is due to missing requirements, you will need to add
new requirements (or refine existing ones), develop tests for the new/modified
requirements, and then run the tests.

RapiCover lets you compare your reports so you can see how new tests you’ve added
have contributed to your total coverage.

2.2	 Missing or incorrest tests
Your requirements may define functionality that applies to particular piece of code.
However, if there are no tests that exercise that section of code, your coverage will be
incomplete.

What to do about it?

If you have identified that:

•	 there is a requirement for the code identified by the missing coverage; but

•	 there is no relevant test traceable to that requirement

you will need to implement additional tests, ensure that they trace to the correct
requirement(s), and run the new tests. As when dealing with missing requirements, it
is useful to be able to compare your reports in this situation.

Figure 3 – RapiCover coverage report comparison

Seven Roadblocks to 100% Structural Coverage | page 6

What the
standards say

DO-178C: Dead code

is “Executable Object

Code (or data) which

exists as a result of a

software development

error but cannot

be executed (code)

or used (data) in

any operational

configuration of the

target computer

environment.”

[DO-178C]

2.3	 Dead code
Identifying missing requirements is one of the primary reasons for performing
code coverage.

If code exists for which there is no requirement, there will be no tests for that
requirement, and consequently that code would not be covered during testing. It may
be the case that the code in question is implicitly related to an existing requirement,
which needs to be refined to cover additional cases, or to be treated in more detail
 (a derived requirement in DO-178C).

What to do about it?

DO-178C recommends “The [dead] code should be removed and an analysis
performed to assess the effect and the need for reverification.”

For ISO 26262, the general guidance for “insufficient” coverage applies, namely to
provide a rationale for why the dead code is acceptable [6:9.4.5].

If it is not possible to remove dead code, it may be possible to provide some form of
justification to demonstrate why it cannot be executed.

2.4	 Deactivated code
Like dead code, deactivated code is also classed as extraneous code by DO-178C.
Unlike dead code, deactivated code is deliberately included in the target system.
Examples of deactivated code include: unused legacy code, unused library functions,
or code that is only executed in certain hardware configurations (for example when
particular mode is selected by adjusting jump leads on hardware pins).

What to do about it?

DO-178C recommends “The [dead] code should be removed and an analysis
performed to assess the effect and the need for reverification.” [6.4.4.3c].

If specific sections of code are to be treated as deactivated code, a reasonable
approach is to provide some form of justification as to why the code:

•	 will never be executed during normal operation; or

•	 will not affect the execution of the system.

1RTCA DO-178C 6.4.4.3c
2ISO 26262 6:9.4.5

page 7 | Seven Roadblocks to 100% Structural Coverage

ISO 26262: Defensive

programming is

highly recommended

by ISO 26262 for

ASIL C and D, and is

recommended for

ASIL B.3

DO-178C: Defensive

programming

practices may be

considered to improve

robustness.4

What the
standards say

2.5	 Defensive programming
You might find 100% code coverage cannot be achieved if your application includes
some form of defensive programming. Common examples of this might include:

•	 A “default” clause in a switch statement in C (equivalently, a “when others” clause
in an Ada case statement), where all of the cases represent the complete range of
possible values. This might be required by a coding standard.

•	 Out of bounds checking where it can be formally proved that the bounds are never
exceeded.

•	 Exception handlers automatically generated by the compiler.

•	 Built-in self-test operations, such as read-write memory tests. These are very
difficult to test, as triggering the condition requires injecting the error exactly at
the right time.

When developing software which features some form of defensive programming, you
should be clear what you are defending against. In general, the purpose of defensive
programming is to ensure that a piece of software degrades gracefully under
unforeseen circumstances. These could include:

•	 Compiler-introduced errors.

•	 Hardware errors.

•	 Design errors.

•	 Incorrectly used interfaces (for example, passing a negative value in an integer
parameter, where only positive values are expected).

One of the characteristics of defensive programming is that it is extremely difficult
to set up test cases to trigger it. Consequently, defensive programming can result in
incomplete code coverage.

What to do about it?

When defensive programming has led to incomplete code coverage, you will need to
provide some form of justification why the defensive programming cannot be executed
during tests.

You will also need to provide evidence (from reviews or special testing) that if it is ever
triggered, the defensive programming works correctly.

3ISO 26262 Table 1
4RTCA DO-178C 4:5

Seven Roadblocks to 100% Structural Coverage | page 8

2.6	 Impossible combinations of events
In some places in your code there may exist situations where doing one thing
automatically precludes doing another. For statement, decision, branch coverage, this
will likely mean that there will be pairs of code blocks that cannot both be executed in
a single run. A trivial example of this is an if-then-else structure. It’s not possible to run
both the then and the else in a single execution. Clearly, all that needs to happen
here is to run multiple test cases and aggregate the results together.

In the case of MC/DC, code may include expressions where it simply isn’t possible to
achieve 100% MC/DC. The following example shows this:

It isn’t possible for enabled to independently affect the outcome of this final
expression, because for enabled to be false, the first condition (speed < 1500) can
never be true.

What to do about it?

Failing to achieve 100% MC/DC coverage in this situation usually indicates that your
conditions could be simplified.

In some cases, simplification of the condition may not be possible, for example, because
the code is automatically generated. If it is not possible to simplify the condition, you
will need to provide some level of justification as to why 100% coverage could not be
achieved.

-- “enabled” might already be set at this point
if speed < 1700 then
	 enabled := true;
end if;
if speed < 1500 and enabled then
	 ...
end if;

page 9 | Seven Roadblocks to 100% Structural Coverage

2.7	 Compiler introduced errors
It is possible that the compiler introduces an error into the generated object code in
such a way that the test cases being executed pass, but do not achieve 100% coverage.

For example:

if a < 10 {

	 result = x / 5;

} else {

	 result = x / 10;

}

If the compiler incorrectly translates the conditional statement as a <= 10, test cases
where a takes the values 3 and 10 and x takes the value 4 will pass correctly, but will
not generate 100% statement coverage.

What to do about it?

In this kind of situation, the remedial action is likely to be much more wide-reaching
than other actions we’ve discussed. You will likely need to do some of the following:

•	 Discuss the issue with the compiler vendor, and if feasible, change compiler to a
version that does not contain this error.

•	 If it is not possible to change compiler version, you may need to conduct a review
of your existing code base to ensure that the same error isn’t triggered by other
parts of your source code.

•	 Add to your coding guidelines/code review guidelines to ensure that the same
error isn’t added in subsequent developments.

Seven Roadblocks to 100% Structural Coverage | page 10

What the
standards say

ISO 26262 “If

the achieved

structural coverage

is considered

insufficient, either

additional test cases

shall be specified or

a rationale shall be

provided.”

As we have seen, if structural code analysis demonstrates less
than 100% coverage, there are four main responses you can
make, depending on the reason why coverage is incomplete:

•	 Remove code. Review shows that this code is unnecessary to the system, and you
can remove it with no negative effects.

•	 Add (or fix) tests. Where tests (and possibly requirements) are incomplete, you
need to develop new tests, which will improve the overall coverage level.

•	 Justify why code will never be executed. For deactivated code, you need to
provide some form of justification why this code cannot be executed.

•	 Justify why it is not possible to test code. Through manual testing/review you
should demonstrate that the code works correctly. For example, for defensive
programming structures, this could involve setting a breakpoint just before the
test for the defensive code, then manually forcing the test to fail, and executing
the defensive code.

3.	Dealing with less than 100%
coverage

Figure 4 – RapiCover report showing 100% addressed coverage using justifications

page 11 | Seven Roadblocks to 100% Structural Coverage

When code is justified, it is important to demonstrate that it has not been executed
during testing. For example, deactivated code should never be executed, nor should
code that is only accessible when the system is in a different mode. If we have said
“this code will never be executed because XYZ” and the code is then executed, that
represents an error in our justifications.

•	 When presenting your code coverage results, you should aim to present:

•	 The parts of the code you have executed through testing.

•	 The parts of the code you have not executed, but have provided some form of
justification for.

•	 The detailed justification for each piece of code that was not executed.

How can I make it easier?

Rapita’s code coverage tool, RapiCover, offers the ability to add a justification
indicating the reason why a section of code was not executed during the system
testing. Sections of code to which justifications have been applied are identified in the
GUI and in exported text reports (which are typically used as part of the certification
case). A justification can be set up once and reused for every test – which is a valuable
reduction in effort when preparing coverage reports for each release.

There are two ways in which justifications can be applied to source code:

1.	They can be added into the source code at the location of the code they refer
to. This makes it straightforward to see which sections of the source code are
expected to remain uncovered during testing.

2.	A separate file containing justifications for specific sections of code can be supplied.
This is useful if different tests exercise the code in different ways. For example, a
set of justifications could be applied to tests on a per-mode basis.

To ensure that justifications are not incorrectly used when a software version changes,
RapiCover also allows the justifications to be tagged with a build or version identifier.

RapiCover will issue a warning when it encounters any code sections that are both
covered and justified, because this may indicate a flaw in the test or any assumptions
made about the operation of the software.

Seven Roadblocks to 100% Structural Coverage | page 12

RapiCover is a structural coverage analysis tool designed
specifically to work with embedded targets.

RapiCover delivers three key benefits:

•	 Reduced timescales by running fewer on-target tests.

•	 Reduced risk through greater tool flexibility.

•	 Reduced effort for certification activities.

4.1	 Reduced timescales by running fewer
 on-target tests

Running system and integration tests can be time-consuming and runs the risk of
introducing schedule delays, especially if the availability of test rigs is limited. Most
commercially available coverage solutions have large instrumentation overheads. As
system resources are typically limited, obtaining coverage with these older coverage
solutions typically requires multiple test builds. This takes longer to complete the
testing program, especially if you need to negotiate additional time on test rigs to
perform the extra tests.

RapiCover is designed specifically for use in resource-constrained, embedded
applications. Because there is considerable variation between embedded systems,
both in their requirements and their underlying technology, RapiCover provides a
range of highly-optimized solutions for the instrumentation code it generates. This
flexibility allows you to make the best use of the resources available on your platform.

This results in best-in-class instrumentation overheads for an on-target code coverage
tool, and consequently fewer test builds.

4.	 About RapiCover

page 13 | Seven Roadblocks to 100% Structural Coverage

4.2	 Reduced risk through greater tool
 flexibility

An early design objective for RapiCover was to make it easy to deploy into any
development environment, whether they be highly customized, extremely complex or
legacy systems.

The two key factors to consider in a deployment of a coverage tool are: build system
integration and coverage data collection.

Build System Integration

RapiCover is designed to work with any combination of compiler (C, C++ or Ada),
processor and real-time operating system (RTOS). Access to command-line tools and
the ability to choose between recommended strategies for integrating RapiCover into
pre-existing build systems ensures a seamless integration.

Coverage Data Collection

RapiCover is designed with the flexibility to handle data from a wide variety of possible
sources. This flexibility means that when creating an integration with a specific target,
you can select the most convenient collection mechanism, including legacy approaches
such as CodeTEST® probes. Figure 4 shows alternative data collection approaches.

To enable a rapid, high-impact integration into your development environment Rapita
Systems provides the option of a target integration service. In this service, Rapita
Systems’ engineers will work with your team to establish an optimal integration into
your development environment. This integration will be consistent with Rapita Systems’
DO-178B/C and ISO 26262 tool qualification process, ensuring that tool qualification
runs smoothly.

A RapiCover integration is based upon the RVS (Rapita Verification Suite) core
toolflow. This makes it easy to extend the integration to support other RVS components
such as RapiTime (measurement-based worst-case execution time analysis) or
RapiTask (visualization of scheduling behavior).

Figure 5 – Example RapiCover data collection approaches

Host Embedded Target

Simulator
RAM

CPUNexus/
ETM

Coverage
dataset

Network

Debugger

I/O portLogic Analyzer

Seven Roadblocks to 100% Structural Coverage | page 14

4.3	 Reduced effort for certification activities
Automatic combination of results from multiple test runs and the ability to justify
missing coverage makes the preparation of coverage software verification results
quicker.

A major driver for the use of code
coverage is the need to meet DO-178B/C
objectives. In addition to providing
options for achieving DO-178B/DO-330
tool qualification, RapiCover also aims
to make the process of gathering and
presenting code coverage results easier.
This is achieved in the following ways:

Multiple format report export

RapiCover lets you view results in our
using our Eclipse®-based viewer and and
export your results into various formats
including plain text, HTML, CSV or XML.

Combine reports from multiple
sources

Coverage data is often generated at
multiple phases of the test program, for
example: unit test, integration test and
system test. RapiCover supports the
consolidation of this data into a single
report.

Justify missing coverage

Where legitimate reasons exist that
specific parts of the code cannot be
executed, RapiCover lets you justify them.
The summary report shows code that is
executed, code that is justified and code
that is neither executed nor justified.

To facilitate your use of RapiCover within
a DO-178B/C project, we provide several
options for tool qualification:

Qualification Data

This gives you access to documents
necessary to support tool qualification of
RapiCover.

Qualification Kit

In addition to the qualification data,
this provides test code and supporting
framework that enables you to generate
evidence that RapiCover works correctly
on your own system.

Qualification Service

Engineers from Rapita Systems work
with you to apply the RapiCover tests
to your system and to develop the
necessary qualification arguments for
your certification case.

page 15 | Seven Roadblocks to 100% Structural Coverage

5.	 Want to learn more?
If you want to learn more about code coverage, visit our website where you gain access
to a wide range of white papers and videos about the topic.

www.rapitasystems.com/code-coverage-ada-c-cplusplus

Rapita Systems regularly releases new material and runs training courses on multicore
timing analysis worldwide. To make sure you’re notified, sign up to our mailing list.

www.rapitasystems.com/newsletter

CodeTEST® is the trade mark of NXP Semiconductors N.V.. Eclipse® is the trade mark of Eclipse.org Foundation, Inc registered in Canada under number 1672029.

http://www.rapitasystems.com/code-coverage-ada-c-cplusplus
http://www.rapitasystems.com/newsletter

About Rapita
Rapita Systems provides on-target software verification tools and services globally
to the embedded aerospace and automotive electronics industries.

Our solutions help to increase software quality, deliver evidence to meet safety
and certification objectives and reduce costs.

Find out more
A range of free high-quality materials are available at:
rapitasystems.com/downloads

Contact
Rapita Systems Ltd.
Atlas House
York, YO10 3JB
UK

+44 (0)1904 413945

Rapita Systems, Inc.
41131 Vincenti Ct.
Novi, Mi, 48375
USA

+1 248-957-9801

Rapita Systems S.L.
Parc UPC, Edificio K2M
c/ Jordi Girona, 1-3
Barcelona 08034
Spain

+34 93 351 02 05

rapitasystems.com

linkedin.com/company/rapita-systems

info@rapitasystems.com

S U P P O R T I N G C U S T O M E R S W I T H :

Rapita Verification Suite:

RapiTest

RapiCover

RapiTime

RapiTask

Engineering Services

V&V Services

Integration Services

Qualification

SW/HW Engineering

Compiler Verification

Multicore verification

MACH178

Multicore Timing Solution

Tools

https://www.rapitasystems.com/downloads
http://www.rapitasystems.com
http://www.linkedin.com/company/rapita-systems

mailto:info%40rapitasystems.com?subject=

